Nuprl Lemma : rel-exp-add-iff 11,40

T:Type, R:(TT), ab:xz:T.
(x rel_exp(T;R;a+bz (y:T. ((x rel_exp(T;R;ay) & (y rel_exp(T;R;bz))) 
latex


Definitionsrel_exp(T;R;n), x f y, P & Q, x:AB(x), n+m, P  Q, x:AB(x), , , x:AB(x), Type, a < b, Void, False, A, A  B, , {x:AB(x)} , t  T, f(a), x:A  B(x), i  j , #$n, -n, n - m, (i = j), s = t, {T}, SQType(T), s ~ t, b, , P  Q, left + right, P  Q, A c B, x.A(x), Unit, P  Q
Lemmasrel exp add, bool cases, eqtt to assert, bool sq, eqff to assert, iff transitivity, assert of bnot, not functionality wrt iff, assert of eq int, nat sq, le wf, ge wf, nat properties, rel exp wf

origin